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The following chapter contains information that is included to give the
unfamilar reader a short introduction to diagnostic ultrasound imaging and
conventional methods and terms used in this context. It also includes more in-
depth information about the concept of color flow imaging (CFI), the modality
under investigation in this thesis work. An overview of conventional methods
is given, and current challenges and limitations are reviewed. A review is
finally given on previous work in the two main topics of the thesis work, that
of two-dimensional velocity estimation and adaptive clutter filtering in CFI.

2.1 Diagnostic ultrasound imaging

2.1.1 Background

The history of diagnostic ultrasound traces back to the 1940s, when the concept of
using ultrasound to image the human interior was conceived based on knowledge of
pulse-echo imaging from SONAR and technology from ultrasonic metal flaw detectors
available at the time. This emerging technology matured during the forties, and by the
end of the decade systematic research into its diagnostic use began in several research
groups over the world. Some of the first descriptions of diagnostic ultrasound imaging
was reported in the early fifties through the pioneering work of Wild and Reid, Howry
and Bliss, and Edler and Hertz [1-3]. An important foundation for the use of this
technology in medicine was the discovery of new piezoelectric materials in the mid-
forties, which allowed for the generation of short high frequency pulses in the MHz
range.

As a diagnostic tool, ultrasound was first conceived as a tool for tissue
characterization, i.e. with the ability to differentiate between different types of tissue
such as cancerous and normal tissue. Although research in this area is still ongoing,
this goal has arguably still not been reached today [4, 5]. Demonstrations of ultrasound
imaging equipment were presented in the fifties. However, it was not until the advent of
transistor technology that equipment could be made that would allow for mainstream
use. The first commercial B-mode (brightness mode) instruments became available in
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2.1. Diagnostic ultrasound imaging

the early sixties, offering static images of the human interior based on the received
signal envelope. Further advances in transistor technology lead to the first real-time
B-mode scanners in the late sixties and through the seventies [6-8].

From the late fifties, effort was also put into registering movement with ultrasound
through the Doppler shift of the received signal. The first effort is usually attributed
to Satumora in 1957 [9]. The first commercial Doppler instruments appeared in the
sixties based on the continuous wave (CW) approach, which did not include any depth
information. Pulsed wave (PW) Doppler instruments for measuring blood flow velocity
at specific depths was described in the late sixties [10-12]. The development of the scan
converter further allowed for duplex operation of both Doppler and B-mode imaging in
the late seventies, while real-time two-dimensional Doppler mapping became feasible in
the mid-eighties. A formidable development has taken place due to dedicated research
in both the technical and clinical community [13, 14].

Ultrasound imaging is today used in a wide range of clinical contexts. Perhaps
the most well known application is that in obstetrics and fetal medicine [15], where
ultrasound examinations are used to investigate the health of the fetus during
pregnancies. Clinical research in this area has been extensive since the late sixties, and
ultrasound examinations can today reveal many potential health risks, reducing the
morbidity and mortality of newborns. Due to its high imaging frame rate, ultrasound
has also found particular use in the diagnosis of cardiovascular decease, where the
dynamics of the heart muscle and the blood flow in the heart and arteries are important
measures. The development of Doppler ultrasound for measuring blood flow and
tissue velocities, has provided physicians with a valuable tool for diagnosis in the
cardiovascular system [16, 17]. Ultrasound imaging is further used in many other
areas of medicine, such as the screening for breast cancer in women, detection of
abnormalities and cancer in the internal organs. It is also used intraoperatively in for
instance heart- and neurosurgery as a tool for quality control. For a more complete
description of ultrasound imaging techniques and applications in medicine, please refer
to one of the many textbooks available, such as [18-21].

In the following subsections, a brief look at the basic principles of ultrasound
imaging, and at the design of modern ultrasound imaging systems will be given.

2.1.2 Basic principles of ultrasound imaging

Ultrasound is defined as pressure waves with frequencies above the human audible
range of 20 kHz. Pressure waves propagate through a medium. In diagnostic
ultrasound imaging, longitudinal pressure wave pulses with center frequencies in the
range of 2-15 MHz are transmitted into the human tissue. As the pressure wave
propagate, it interacts with different tissue characteristics through scattering and
attenuation processes. This fundamental mechanism is the foundation of ultrasound
imaging. The pressure amplitude of the backscattered ultrasound can be registered
and used to form an image of the different tissue media present.

The properties of a tissue medium can be described by a given density p and
compressibility . It is the local differences in density and compressibility that causes
the scattering of ultrasound. The basic equation governing pressure wave propagation
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Figure 2.1: The concept of pulse-echo ultrasound imaging. An ultrasound pulse is
emitted into the tissue, and is scattered at interfaces between different types of tissue
Z1, Zs, and Z3. The backscattered signal is received by the same transducer and form
the basis for the ultrasound image.

can be derived by considering the conservation of mass and momentum. Assuming
a homogenous medium, and linear propagation where the displacement of scattering
volumes is linearly proportional to the change in pressure, the basic equation governing
the propagation of a pressure wave p(r,t) is given by [22]

1 02p(r,t)
2 v
Vep(r,t) — 2 92 0, (2.1)
where r is a spatial position vector, ¢ is time, and ¢ = —\/;7 is the speed of sound in the

medium. The speed of sound in human tissue has been measured to be 1540 m/s on
average, with only a small range for different types of soft tissue [23]. The assumption
of a constant value for the speed of sound is fundamental in conventional ultrasound
imaging, and allows for a simple conversion between imaging depth and receive time
in pulse-echo operation.

The ultrasonic waves are attenuated as they travel through the tissue due to
power absorptions, scattering losses, and the geometric spreading of the ultrasound
beam [22]. This attenuation limit the penetration depth in ultrasound imaging.
Because the spatial resolution of an ultrasound image is proportional to the frequency
of the transmitted pulse, one would in principle use higher frequencies. Unfortunately
the attenuation of ultrasonic waves is frequency dependent, and the optimal working
frequency is a compromise between resolution and penetration. The attenuation in
human soft tissue is usually approximated to be 0.5 dB/cmMHz one way [24].

Conventional ultrasound imaging is pulse-echo imaging, a concept illustrated in
Fig. 2.7. An ultrasound transducer transfers pressure waves into the tissue, and also
receives the backscattered signal produced as the wave encounters differences in tissue
properties across its path. The backscattered signal is a measure of the different
tissue properties and can be used to form an image. Scattering objects can be divided
into three basic types. An object large compared to the wavelength of the transmitted
pulse will reflect the ultrasound wave in a specular way. Scattering objects comparable
to the wavelength will scatter the ultrasound wave directionally. Finally, scattering
objects small compared to the wavelength will scatter the incoming ultrasound wave
in an omnidirectional way, so-called Rayleigh scattering. As an example, specular
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Figure 2.2: The beam profile of a plane unfocused (upper) and focused transducer
(lower). The course of the unfocused beam can be divided in to a near field and far
field region. In the near field diffraction effects are prominent and cause a convergence
of the beam known as diffraction focusing. By focusing, a narrow beam width can be
achieved in the near field over a limited depth region.

reflectors could be structures such as bone or vessel walls, while Rayleigh scattering
results when the ultrasound beam encounters the small red blood cells. Combinations
of these scattering processes are typically present throughout an ultrasound image.

Beam formation

When the wavelength of the transmitted pressure wave becomes small compared to the
transmitting aperture, the sound beam generated will become directional. This is the
case for the unfocused ultrasound beam illustrated in the upper schematic of Fig. 2.2.
It is useful to divide the course of the sound beam into specific regions in depth, the
near and far field. In the near field diffraction effects are prominent. These effects
are present due to the limited aperture used, and will cause the beam to converge, a
phenomenon called diffraction focusing. The extreme near field is often defined as the
region where the beam is a close replica in width to that of the aperture used. The
far field is defined as the region where the pressure wave amplitude fall off at a fixed
rate. The transition between the near and far field is for a plane circular transducer
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given by
D2
2)7
where D is the diameter of the aperture, and X is the wavelength of the emitted pulse.
The one way beam width is usually defined as the -12 dB drop in signal power. As
an example, consider a transducer with an aperture diameter of 2 cm and a center
frequency of 2.5 MHz. The start of the far field region is then given by

0.02% - 2.5¢6

In other words, ultrasound image formation is made in the near field of the transducer.

The beam can be focused by curving the aperture, by using a lens, or by using
transducer arrays and electronic delays between the different array elements. When
focusing the far field is effectively brought into the near field, and a narrow beam
width can then be achieved at a specific depth in a limited region. In order to achieve
efficient focusing, the focus point must lie in the near field of the beam as defined for a
circular transducer in (2.2). A focused beam profile is shown in the lower schematic of
Fig. 2.2. The beam width Dg determines the lateral resolution of the imaging system,
and is for a focused transducer given by (-3 dB beam width)

A
Dp = 5F = Fy, (2.4)

where F is the distance to the focus point, D is the aperture diameter, A is the
wavelength. Fl is the focus distance measured in apertures, the F-number of the
imaging system. The focal depth Lr of the beam defines the effective depth region of
uniform beam width as given at the focus depth. The (-1 dB) focal depth is given by

Lp=4-)\Fj. (2.5)

(2.2)

Zfar =

For a transducer aperture of 2 cm with a center frequency emission of 2.5 MHz, focused
at 7 cm, the beam width and focus depth is equal to

0.07 - 1540 0.07% - 1540
=—cm=022cm, Lp=4-———c
0.02 - 2.5e6 0.022 - 2.5¢6

The F-number defines the lateral resolution in focus as given by (2.4), and is
therefore desired to be low to achieve a narrow beam width. However as seen in (2.5),
the depth of focus is proportional to the F-number squared. Using too low F-numbers
may therefore concentrate the sound energy in a small region along the beam axis, and
the appropriate F-number must therefore be optimized according to a given transducer
design and application.

The beam shape can be further optimized using apodization, dynamic aperture,
and dynamic focus. The concept of apodization is to weight the individual elements
according to a window function. This will reduce the beam side lobe level at the
expense of a broader main lobe. Dynamic aperture is further used to create a more
uniform beam width in depth, by reducing the aperture size used at closer depths on
receive to keep the F-number as constant as possible. The concept of dynamic focus
is to sweep the focus electronically on receive according to depth.

Dp m = 3.0 cm (2.6)
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Figure 2.3: Two common ultrasound scanning modes, the sector and linear scan.

Image formation

Image formation is done by sweeping the ultrasound beam over a region of interest,
and registering the backscattered signal in each direction. The sweeping of the beam
is today typically done electronically using transducer arrays, but is also still done
mechanically in certain applications, for instance in high frequency imaging systems.
Sweeping the beam electronically can be done in different ways. Two standard
techniques are depicted in Fig. 2.3. The sector scan uses transmission delays on the
array elements to not only focus the beam, but also to steer the beam in a desired
direction. This is called phased array imaging, and is most widely used in cardiac
applications where the acoustic window between the ribs is limited. To be able to
steer the beam at larger angles, the array elements must be small compared to the
wavelength in order to achieve efficient focusing and to avoid grating lobes. Grating
lobes are repetitions of the main lobe in space due to the division of the aperture into
elements. A common design criteria is to require an element size of a = A/2, which in
theory allows for efficient steering in a sector of 90 degrees without grating lobes.

Another type of sweeping is the linear scan. A larger aperture is typically
used, with larger elements of size ~ 1.5\ as steering requirements are limited. A
smaller subaperture is used to form a beam at a given offset from the center of the
transducer. This subaperture is swept over the aperture to produce a rectangular
image region. Linear scans are used in vascular and abdominal applications. In
abdominal applications it is also common to curve the transducer aperture to achieve
a broader field of view and a better contact with the abdomen, so-called curvilinear
arrays.

Display modes

Several different display modes have been introduced since the beginning of ultrasound
imaging. The most basic display modality today is the B-mode modality, which
shows a two-dimensional image of tissue in gray scale. Images are made based on the

36



Chapter 2. Background

B-mode (brightness mode) M-mode (motion mode)

Figure 2.4: The B-mode and M-mode imaging of a healthy human heart.

received signal envelope. Due to the high dynamic range of the received signal from
different tissue structures, the signal is logarithmically compressed before display to
show both weak and strong echoes simultaneously. In B-mode, a high spatial resolution
is important in order to resolve close targets. A high frame rate is also desired in many
clinical applications to investigate the dynamics of structures.

Another common modality is the M-mode (motion mode), which displays the
envelope of the acquired signal along a specific beam direction over time. This
one-dimensional modality has a very high imaging frame rate and is suitable for
investigating rapid movements of tissue structures, for instance the movement of the
heart valves. M-mode images along curved lines, called curved M-mode, is also used
based on two-dimensional acquisitions. In Fig. 2.4, a standard B-mode and M-mode
image of a healthy human heart is shown.

In addition to the two major tissue imaging modalities described, a number of
Doppler related modalities have been introduced. Continuous wave (CW) and pulsed
wave (PW) spectral Doppler is used to investigate the blood flow distribution in the
heart and arteries. Two-dimensional Doppler mapping, or color flow imaging (CFI),
became a standard modality in the early nineties, and shows the distribution of flow
velocities in a region of interest. Duplex operation of both B-mode and spectral
Doppler or CFI, and triplex modalities of all three is also available on modern systems.

Static and electrocardiogram-gated 3-D images have been available for some time
for abdominal imaging using mechanically steered transducers. In recent years,
dynamic three-dimensional imaging has also become available. Using 2-D array
technology, real-time 3-D images of the heart anatomy and blood flow can be obtained.
The new information available can for instance be beneficial in the diagnosis of the
heart valve disease.
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Figure 2.5: The GE Vivid 7 ultrasound system. Different parts of the system has been
labeled.
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Figure 2.6: Block diagram of modern generic ultrasound system.

2.1.3 Building blocks of an ultrasound imaging system

A modern high-end scanner is shown in Fig. 2.5. These systems contain a user interface
and display, probe connectors, an optical storage unit, ECG and other auxiliary input
connectors, a thermal printer, and often units for supporting old recordings such as
a VCR. Modern systems are designed to be portable within hospital buildings, but
laptop size systems are now also available which includes most of the functionality of
high-end scanners. The basic building blocks and signal chain of a modern ultrasound
imaging system is shown in Fig. 2.6, and will be described in the following subsections.
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Transducer

The transducer is an indispensable part of the ultrasound imaging system, responsible
for the transmission and reception of ultrasonic pressure waves. A typical transducer
today consists of an array of piezoelectric elements. On transmission, these
piezoelectric elements vibrate in response to an external electric field, creating
ultrasonic waves. On receive, the piezoelectic elements vibrate in response to an
external pressure, producing an electrical signal. Ultrasound pulse emission timing
and array element apodization can be controlled electronically, and allows for flexible
beam shaping and electronic focusing and steering of the beam. Transducers come in
different shapes and sizes designed for specific clinical applications. Also, due to the
limited frequency bandwidth of the currently available piezoelectric ceramic materials,
transducers also have to be designed to work in a specific frequency range, based on
the demands of penetration in a given clinical application. For instance, a transducer
designed for cardiac imaging has to be small enough to fit between the human ribs,
and might operate in a frequency range from 2-4 MHz in order to achieve sufficient
penetration to cover the heart. A transducer for imaging peripheral vessels on the other
hand, can be considerably larger and might operate at frequencies of 7-14 MHz due to
shallow penetration depths. The subject of transducer design is comprehensive, and
out of scope for this introductory chapter. For more information on the subject please
refer to [22]. Challenges for the future include the design of two-dimensional arrays for
high-quality 3-D imaging, and broadband designs for multi-frequency operation and
non-linear imaging.

Front-end

The front-end of the ultrasound system consists of dedicated hardware for controlling
the transmission and reception of ultrasonic waves. The delays needed to focus the
ultrasound beam in a given direction are calculated and used to transmit ultrasound
pulses in directions according to the given scanning mode. After transmission, the
system enters receive mode. Depth dependent preamplification is needed to exploit
the full dynamic range of the A/D convertors. The received signal from the transducer
elements are then beamformed in a given direction by a delay-and-sum procedure. A
receive filter matched to the bandwidth of the received signal is applied to maximize
the signal-to-noise ratio. Since the attenuation of ultrasound is frequency dependent,
the receive filter is often swept to follow the changes in frequency content over
depth. Echoes from deeper structures are attenuated more than echoes from shallow
structures, and to image both near and far echoes simultaneously, a depth dependent
amplification is applied to the signal, called time-gain compensation. The beamformed
signal finally goes through a complex demodulator, where the RF-signal is transferred
to baseband, and downsampled to reduce the amount of data for later processing.
Much of the signal processing has in modern systems been moved to the back-end of
the system, however it is also common to used dedicated hardware for this purpose in
the front-end.
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Back-end

In modern systems the back end of an ultrasound system typically consists of a
conventional desktop computer, and is responsible for tasks such as user interfacing,
signal processing, image preparation and scan conversion, and archive storage of
ultrasound recordings. In modern systems, the back end tasks are performed in
software running on a real-time aware operating system. User interface tasks are
typically first administered by the back end. For instance, the selection of a specific
image modality by the user, will first be administered by the back end computer,
which further communicates with and sets up the front-end for new operation.
The rapid development of computer technology has moved increasingly more tasks
to the back-end of the system. Processing tasks such as image filtering, Doppler
processing, and scan conversion are now feasible to do in software, which is much more
flexible and cost effective than previous hardware solutions. The development of high
performance graphics cards in recent years, have also made real-time rendering of 3-D
ultrasound images feasible at a low cost. Systems for research are now available where
beamforming can be done in software. In the long run, even real-time beamforming
in software will most likely become feasible.

2.1.4 Ultrasound image quality
Spatial resolution

The spatial resolution is defined as the minimum spacing between targets that still can
be distinguished by the imaging system. In ultrasound imaging the spatial resolution
is theoretically given by the center frequency and bandwidth of the emitted pulse, the
aperture diameter, and the focus depth. The theoretical radial resolution is related to
the temporal length of the emitted pulse through the following relation:

C: Tpulse o c

Ar = =
2 2- Bpulse ’

(2.7)

where Bpyse is the pulse bandwidth. The radial resolution is at first hand limited by
the transducer bandwidth, and is further degraded by frequency dependent attenuation
which shifts the frequency contents of the received pulse towards zero. In B-mode
imaging the radial resolution is in the range of wavelengths, while in Doppler modes
it is increased to achieve sufficient sensitivity to the weaker blood signal level. The
lateral resolution is given by a beam width measure as defined in (2.4), and is therefore
dependent on the ratio between the focus depth and aperture (the F-number), and the
wavelength of the emitted pulse. The lateral image resolution is broadened outside of
the beam axis focus.

The total imaging system resolution can be described through the point spread
function (PSF), which is defined as the image of an infinitely small point. In Fig. 2.7,
the pulse-echo point spread function for pulse center frequency of 2.5 MHz with a
relative bandwidth of 60%, using a F-number of 2 on both transmit and receive is
shown. As can be observed in the figure, the ultrasound imaging system has a limited
region of support in the Fourier space. In the lateral direction, the imaging system
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Figure 2.7: Example of a two-way point spread function (PSF) of an ultrasound
imaging system. The PSF is given in focus of a transducer using an F-number of
2 on both transmit and receive. A pulse with center frequency of 2.5 MHz with a
relative bandwidth of 60% was used.

exhibits a low-pass character, while in the axial direction a bandpass character is given.
It is this bandpass character that gives the speckle pattern and anisotropic properties
of the ultrasound images [25].

Contrast resolution

The contrast resolution is defined as the ability of the imaging system to differentiate
between two regions of different scattering properties. In ultrasound imaging these
scattering properties are given by local changes in compressibility and density. The
contrast resolution in ultrasound imaging is degraded by beam sidelobes and by
acoustic noise such as reverberations and phase front aberrations. The contrast
resolution is a local characteristic, and depends both on system design and the imaging
object through the inferred acoustic noise. It is therefore difficult to give an absolute
measure of this property for ultrasound imaging.

Factors corrupting image quality

Several factors limit the quality in ultrasound images. These are related to both
fundamental physical phenomenons and to system design.

Reverberations: Conventional ultrasound imaging operates in the Born approxi-
mation regime, where only one scattering process is assumed before the wave
is received at the receiving transducer. In reality, the ultrasound wave may
be scattered multiple times across its path, called reverberations. Due to
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reverberations, signal from specific scatterers are received multiple times, and
ghost images are there produced that degrade the contrast resolution of the
image.

Phase front aberrations: In conventional ultrasound imaging, the tissue medium
is assumed homogenous, and the speed of sound therefore assumed constant. In
reality, different types of tissue are present with varying speeds of sound. When
different parts of the beam wavefront travel through different types of tissue, the
varying speed of sound will cause the wavefront to be distorted. This is termed
phase front aberration. Phase front aberration infers a less efficient focusing,
which result in a degradation in lateral resolution due to a broadened main lobe,
and in contrast resolution due to an increased side lobe level.

Frequency dependent attenuation: Due to the frequency dependent characteris-
tics of the attenuation of ultrasound in tissue, the received signal center frequency
will shift towards lower frequencies during propagation. This center frequency
shift results in a degradation of the spatial resolution and penetration which is
aggravated for increasing depths.

Beam sidelobes: Due to the finite aperture used when imaging, beam sidelobes will
be present. Scatterers present in the beam side lobes will be registered on receive,
and in effect degrades the contrast resolution of the image. By using apodization
of the individual elements on the transducer array, it is possible to trade a wider
mainlobe for a lower sidelobe level.

Grating lobes: Due to the division of the aperture in array elements the beam
pattern will be reproduced periodically in space. The angle between the grating
lobes and the main lobe is determined by the size of the individual array elements,
called the pitch. Grating lobes may infer visible image artifacts, and degrade
the contrast resolution as for beam sidelobes.

2.1.5 Ultrasound Doppler imaging

When a transmitted ultrasound wave is reflected from a moving scatterer, the wave
will experience a shift in frequency. This is termed the Doppler effect, named after
Christian Doppler who first described the phenomenon [26]. The Doppler effect plays
with our sense of time by contracting or expanding the timescale of waves as they are
emitted from a moving source or reflected of a moving target. In ultrasound pulse-echo
imaging both of these cases occur. The scaling of the temporal axis can then be shown
to be given by [27]

c+wvcosf 2v cos

(1+

c—vcosf c

), (2.8)

where 6 is the angle between the scatterer velocity vector and the ultrasound beam
direction, and v cos f is the axial component of the scatterer velocity, defined as positive
towards the ultrasound transducer. The corresponding shift in frequency is then given
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by:
v cos

fa=afo— fo=2f (2.9)

c
where, fg is termed the Doppler shift, and fj is the emitted frequency. The equation
is valid as long as vcosf < c.

The Doppler principle can be used to measure the velocity of both tissue and blood
with ultrasound. Tissue velocities are typically quite low compared to blood flow, but
with some exceptions. The contractions of the myocardium can for instance be in the
range around 10 cm/s, while the movement of the heart valves can have velocities as
high as 50 em/s. For blood flow the velocities range up to 1 m/s for normal flow, while
stenotic and valve insufficiency flow can reach as high as 6 m/s. Imaging with a pulse
center frequency of 2.5 MHz, this means that Doppler shifts can range up to 19500
kHz. In diagnostic ultrasound, the Doppler shifts are hence in the human audible
range.

For blood the received signal from an insonified sample volume is a sum of
contributions from a large number scatterers, each producing a Doppler shift according
to their given velocity and direction. The received signal is therefore made up of a
spectrum of different velocities. Further, as each scatterer is observed in a finite time
interval, a non-zero bandwidth is given for each velocity. This is termed the transit
time effect.

The velocity spectrum within a sample volume can be investigated by spectral
analysis of the received signal. As the Doppler shift is in the audible range, it is also
common to generate sound through a set of speakers for the physicians to interpret.
This was in fact how the early Doppler instruments strictly operated, before real-time
spectral analysis became computationally feasible. An increasing scatterer velocity
causes an increasing Doppler shift and therefore a higher pitch of the sound. Two
different Doppler modalities have become standard, based on either a continuous wave
(CW) excitation, or a pulsed wave (PW) excitation approach. A brief description will
now be given. For a more thorough description please refer to [21, 22, 27, 28].

Continuous-wave Doppler

In continuous-wave Doppler (CW-Doppler), a single frequency signal is continuously
transmitted into the tissue, while the backscattered signal is simultaneously received,
typically by a different parts on the same transducer aperture. The sample volume in
CW-Doppler is given by the overlap between the transmit and receive beam. Doppler
shifts from all scatterers moving in this large region of overlap are therefore observed,
and in practice no range resolution is available in CW-Doppler. The main advantage
of the CW approach is that it is not limited by a maximum measurable velocity, as a
continuous recording of the Doppler signal is obtained.

The magnitude and sign of the Doppler frequency can be obtained by quadrature
demodulation. Consider the CW emission given by

e(t) = cos(2m fot) = Re{e™™ 0}, (2.10)
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where fj is the emitted sinusoidal frequency. Assuming the received signal at time ¢
to be a delayed, scaled, and Doppler shifted version of the emitted signal at time ¢,
we get:

r(t) = Aa(t — to)) - e(a(t — to)) = A(a(t —to)) - cos(2m foau(t — to)). (2.11)

The complex analytic signal can be obtained through the Hilbert transform, and is
given by: ~ _
#(t) = A(a(t — to)) - e2mofolt=to) (2.12)

Mixing the received analytic signal with the quadrature reference signal e~*27/ot then
yields:

TIQ(t) _ A(Ox(t _ to)) . ei27rafo(t—to) i e—i27rfot

_ A(a(t _ to)) . gi2m(afo—fo)t+2mfoto _ fl(a(t _ to)) . gi2mfat+do (2.13)

revealing the complex Doppler signal.

Pulsed-wave Doppler

In pulsed-wave Doppler (PW-Doppler), a series of pulses are emitted into the tissue
at a constant pulse repetition frequency (PRF), phase-coherent with respect to
the transmission carrier frequency fy, and range-gated on receive to achieve range
resolution as in regular pulse-echo imaging. As the pulses interact with moving
scatterers, they are reflected and shifted in frequency according to (2.9). In PW-
Doppler, the pulse length need to be shorter than T = 1/PRF in order to achieve
range resolution. This requirement and the fact that the change in pulse bandwidth
due to attenuation can be large compared to the Doppler shift itself, makes it difficult
to measure the Doppler shift directly as in CW-Doppler [27]. Instead, an approach
based on analyzing the difference in subsequently emitted pulses is taken. Due to the
axial movement of the scatterer, the received signal from consecutive emissions will
be delayed an amount proportional to the axial velocity. A simplified example for a
single scatterer will illustrate this. The emitted pulse typically consist of a burst of
sinusoidal oscillations, as given in complex form by

e(t) = g(t)e'?fot, (2.14)

where g(t) is the complex envelope of the pulse and fy is the pulse carrier frequency.
Given a single scatterer at depth ry with velocity v and angle 6 compared to the
ultrasound beam. Pulses are emitted at intervals of T' seconds. The received complex
signal from a pulse emitted at time ¢ can then be described by

rm(t) = e(a(t —tm)), (2.15)

where « is the time compression factor given in (2.8), and t,, is the relative time from
pulse emission to reception for pulse number m, given by

2 2 OmT
L - .16
C C
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The relation between two consecutive pulses then becomes

2v cos OmT

rm(t) = e(a(t —tm)) = e(alt —to — )) = rm—1(t —7), (2.17)

c
which in this ideal case is a delayed version of the previous pulse, given by the
displacement of the scatterer in the axial direction. The velocity of the scatterer
can be found either by trying to estimate 7 directly from consecutive RF-signals, or
by sampling the resulting change in phase compared to the carrier frequency between
consecutive pulses. Conventional PW-Doppler uses the latter method. Inserting (2.14)
into the expression for r,,(t) gives

’I"m(t) — g(a(t _ tm))eiQﬂ'foa(t—to—mT) _ g(a(t _ tm))61'271'}"goz(t—t0)ez'<;5(m)7 (218)

where the additional phase function ¢(m) is given by

2 or
o(m) = 27rf0a&m. (2.19)
The frequency of this phase function then becomes
1 ¢(m) —p(m—1) v cosf
fo=5- T = 2foa—— = fa, (2.20)

where the instantaneous frequency is approximated by a discrete derivative. As seen,
the instantaneous Doppler shift is actually an artifact in pulsed Doppler systems. The
equation is valid for vcosf < c. This signal is termed the complex Doppler signal,
or simply the Doppler signal. In practical systems, the complex Doppler signal is
obtained by removing the carrier frequency through complex demodulation. The sign
of the Doppler shift can be obtained by inspecting the phase relationship between the
in-phase and quadrature components [20, 21].

2.2 Color Flow Imaging

2.2.1 Background

Color flow imaging (CFT) is a modality that provides an image of flow velocity and
direction in a two- or three-dimensional region of interest. In this way, the distributed
flow presence throughout an image region can be observed, abnormal flow patterns
can be detected and investigated, and quantitative measurements of flow velocities can
be combined with area estimates to produce volume flow. The information acquired
by CFI is encoded in a color image, hence its name, and is combined with B-mode
imaging of tissue to provide an image both the tissue anatomy and flow conditions.
The modality has been given different names, and other well used synonyms and
acronyms include color flow mapping (CFM) and color-Doppler imaging (CDI), the
latter is most often used in the clinical community.

In today’s high-end ultrasound systems, the CFI modality is integrated along with
B-mode and M-mode imaging, and also PW- and CW-Doppler modes. Duplex and
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triplex imaging where combinations of the modalities are also available. The CFI
modality both alone and in combination with spectral Doppler has proven valuable
in many different clinical contexts, such as in cardiology, obstetrics and gynecology,
pediatrics, vascular surgery, and more [18, 19]. The method has perhaps found
particular use in the diagnosis of the cardiovascular system, where it for instance
is used to locate and evaluate heart valve insufficiencies, septum defects, and artery
plaque stenosis.

Color flow imaging provides quantitative measurements of the axial velocity and
direction of blood flow. However, the method is despite of this mostly used in a
qualitative way for the visual detection of areas of abnormal blood flow patterns.
These areas are then further examined using the more detailed spectral display of
CW- and PW-Doppler. The reason for the non-quantitative use can be related to
basic limitations in temporal resolution of the velocity measurements compared to
the spectral Doppler techniques, but can also be attributed to limitations of current
estimation schemes with regards to velocity aliasing and angle-dependencies.

The history of ultrasound CFI began in the late seventies, when multi range gate
(MRG) PW systems were introduced to estimate the flow velocity along several range
gates in depth [29]. This allowed for the measurement of velocity profiles. The concept
of color flow imaging emerged as a natural extension of these MRG PW instruments,
by also estimating the flow velocity along several beams directions. The first two-
dimensional color flow images were produced by processing data from MRG Doppler
system scanned over a region of interest [30, 31].

The estimation of the complete Doppler spectrum in each range gate is an
unpractical solution in CFI, and research efforts was put into finding efficient and
accurate algorithms for estimating representative spectral parameters such as the mean
Doppler frequency. This approach had previously been abandoned in the context of
PW-Doppler systems when real-time spectral processing became feasible [32], but
was once again a relevant issue for MRG Doppler and CFI methods. In CFI the
estimation procedure is particulary challenging due to short ensemble lengths available
for processing. Time-domain algorithms became the practical solution, and several
estimators were proposed for real-time estimation of the first three spectral moments,
signal power, mean frequency, and frequency spread in the CFI context [32-35].

The first real-time CFI systems were introduced in the mid-eighties. They were
based on the autocorrelation approach introduced to the ultrasound community by
Namekawa and Kasai [36, 37]. The method had earlier been described and used
in the weather-RADAR community [38-40], where real-time color-Doppler imaging
was demonstrated as early as the mid-seventies [41]. The autocorrelation estimator
has prevailed, and is today the standard algorithm used in most commercial scanner
systems. Since the first real-time systems, the modality has been improved in different
aspects. The first commericial system was actually based on electronic scanning
using phased-array transducers. However, the potential of electronic scanning could
not be fully exploited for CFI at this time, and mechanically scanned transducer
systems were soon after introduced with better performance. It was first by the
advent of digital front-end technology that the advantages of electronic scanning really
could be utilized through beam interleaving and parallel beamforming techniques,
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Figure 2.8: Block diagram of basic CFI processing.

increasing the flexibility and frame rate. Digital systems have further eased the
implementation of new algorithms, for instance the implementation and evaluation of
more advanced clutter rejection filtering, which has received much attention due to its
major influence on the resulting images. The computational power of today’s desktop
computers are now at a stage where the CFI processing can be done in software, which
further increases the flexibility. The latest technology to appear is real-time dynamic
three-dimensional color flow imaging based on data acquired using 2-D phased-array
transducers. This modality take full advantage of the increased processing power of
current CPUs, and also the massive development in graphic card performance that
has taken place in recent years, making it possible to do real-time three-dimensional
rendering of image volumes.

In the following subsections, a detailed look at the inner workings of CFI systems
will be given, and some aspects not covered in the thesis papers will also be included.
An in-depth description of CFI systems and algorithms has also been given by
Jensen [27], Angelsen and Torp [42], Wells [43], and Ferarra [44]. Detailed descriptions
of clinical application of CFI can for instance be found in [18, 19, 21].

2.2.2 Building blocks of ultrasound CFI

A Dblock diagram illustrating the basic signal processing blocks of CFI is given in
Fig. 2.8. At each processing stage in the figure, a number of subtopics are listed
which will be explained in coming sections. The processing described is based on the
assumption of using transducer arrays, where the ultrasound beam can be steered
and focused electronically in the desired directions. In this way subsequent beams
has discrete positions in space, which is contrary to mechanical transducers where
the beam is swept continuously over the image region of interest. After the data
acquisition of a complete CFI frame, Np discrete number of temporal samples is
available for processing for each sample bin in the image. This temporal signal vector
x is first processed to remove the clutter signal from tissue structures, which is referred
to as the blood signal separation stage. After the separation of the blood flow signal,
the estimation of parameters reflecting properties of the flow is performed. Typically,
the mean velocity of blood scatterers, the blood signal power, and also the blood
velocity spread within the sample volume is estimated. The estimated parameters
are conventionally encoded in different colors and visualized superimposed on a gray-
scaled B-mode image of the tissue anatomy. The CFI processing will now be described
in more detail.
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2.2.3 Data acquisition

The data acquisition in CFT is based on a pulsed wave approach. The ultrasonic beam
is scanned over the region to be imaged, and a series of Np pulses are transmitted
and received in each beam direction. This acquisition scheme is referred to as packet
acquisition, and the number of pulses Np is called the packet size. There are several
challenges in CFI acquisition. Blood flow parameters are estimated for every range
gate along the beam. To investigate local changes in the two-dimensional velocity
distribution, a high spatial resolution and therefore the use of high-bandwidth pulses
are desired. However, assuming the pulse energy constant, the signal-to-noise ratio
of the received signal from blood can be shown to be inversely proportional to the
bandwidth of the emitted pulse [45], and to achieve a sufficient sensitivity, longer pulses
must most often be used. This compromises the spatial resolution, and also requires
a separate acquisition of B-mode images. If the acoustic energy of the emitted pulse
is limited by restrictions set on the emitted pulse amplitude, one way to retain both a
high spatial resolution and sufficient sensitivity could be to use coded excitation [46,
47]. For instance, a longer pulse with high bandwidth such as the chirp excitation
could be transmitted, and deconvolved on receive for pulse compression.

Another challenge is that of frame rate. In order to achieve a good separation
of the blood flow signal component and high quality velocity estimates, it is desired
to have a high packet size. However, in order to follow the dynamics of the flow, a
high imaging frame rate is required. This restricts the packet size to typically 8-16
samples depending on the clinical application. The frame rate can be increased by
reducing the lateral beam sampling, however this will reduce the spatial resolution
and therefore the quality of the image, and a compromise is again made. In modern
scanner systems, multi-line acquisition (MLA) is often available, where several receive
beams are generated per transmit beam, increasing the frame rate at the expense of
more beamforming hardware [48, 49]. With the introduction of real-time 3-D color flow
imaging using 2-D arrays, the problem of frame rate has become even more critical.
More MLA could be performed, but these methods also introduces image artifacts.
The number of MLA is also limited by demands of sensitivity, as a broader transmit
beam must be used.

The received signal along each beam is sampled throughout the image depth at a
high sampling rate (~ 50 MHz) and is referred to as the fast-time signal. For a given
range depth, the signal formed from subsequent beam acquisitions is referred to as
the slow-time signal. This concept is shown in Fig. 2.9, illustrating the received and
beamformed signal along a direction containing a strong stationary scatterer at zg, a
moving scatterer at z1, and a thermal noise component. Combined, the fast-time and
slow-time signal from a given range gate form the complete signal foundation of CFI
velocity estimators. The corresponding Fourier space content is shown to the right.
As can be seen, the blood flow signal of interest is spread in two frequency dimensions.
The angle ¢ is related to the velocity of the scatterers through the Doppler equation.

The rate of subsequent pulse transmissions, the pulse repetition frequency (PRF),
determines the sampling rate of the slow-time signal. The slow-time signal variation
must therefore lie below PRF/2, the Nyquist rate, in order to be properly represented.
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Figure 2.9: Input signal foundation for processing in CFI. In the example a strong
scatterer one dimension along the beam called fast-time, and one between subsequent
beams called slow-time. To the right the two-dimensional Fourier transform depict

For velocity estimators utilizing the slow-time signal only, the PRF used is therefore
proportional to the maximum velocity measurable before aliasing occurs. The depth
of the image scan determines the maximum PRF available before ambiguities as to
where the signal is obtained is introduced. Although this constraint is sometimes
disregarded in high-PRF Doppler modalities, it is avoided in conventional CFI by
waiting the appropriate time before firing a new pulse. By decreasing the PRF with a
factor k, there is time to acquire data in k—1 other beam directions before transmitting
the next pulse in the initial direction. This technique is termed beam interleaving [50].
The k number of beams is called the interleave group size (IGS) and together form an
interleave group (IG). The interleave group size (IGS) can be expressed by

PRF max

IGS = MRF

J - MLA, (2.21)

where MLA is the number of parallel receive beams acquired, and |- | means rounding
off to the nearest integer towards —oo. Beam interleaving is used to maximize the
overall frame rate for a given user chosen PRF, set according to the blood velocity
range of interest.

After beamforming and complex demodulation of the received signal has been
performed, the signal-to-noise ratio (SNR) of the received signal is maximized by a
filter matched to the received signal bandwidth. It has been shown that using a receive
filter with a rectangular impulse response with length equal to the emitted pulse is
close to optimal for this purpose [45].
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2.2.4 Signal model

General signal model

After data acquisition, a two-dimensional signal matrix is in general given, consisting
of sampled data in both fast-time and slow-time respectively, as illustrated in Fig. 2.9.
In this thesis work, only the slow-time signal is considered, which means that the
signal from each range gate is processed separately. The resulting received signal then
reduces to a complex signal vector of Np slow-time samples, = [z, %2, ... ,Zn,]T .

The received slow-time signal from an insonified sample volume is in our general
model assumed to consist of three signal components. A clutter component c
originating from sound scattered from tissue and acoustic noise sources such as
reverberation and beam side lobes, a blood signal component b originating from sound
scattered from the moving blood cells, and an electrical/thermal noise component n.
The general signal model is then given by

r=c+b+n. (2.22)

The blood and clutter signal components originate from different scattering sources
at different spatial locations, and are therefore considered statistically independent.
As the bandwidth of the thermal noise after receiver filtering is large compared to the
sampling frequency of the Doppler signal (PRF), it is modeled as white noise.

Assuming a zero-mean complex Gaussian process for the received signal from both
blood and tissue as rationalized in the upcoming Section 2.2.4 and 2.2.4, the probability
density function (PDF) of the received signal vector is given by

1 TR g
() = — =3 2.23

Being Gaussian, the signal is completely characterized statistically by its second order
moments. The second order moment information is then contained in the signal
correlation matrix given by [51]

R, = E{zx*T}, (2.24)

where E denotes the expectation operator. Assuming statistical independence this can
further be written as

R, =R.+Ry +R, =R, + Ry, + 021, (2.25)

where R, is the clutter correlation matrix, Ry is the blood signal correlation matrix,

02 is the thermal noise variance, and I is the identity matrix. In this framework we

do not assume stationarity.

Blood signal model

Blood is a medium consisting of several types of cells suspended in a fluid medium
known as plasma. The main cell concentration is made up of red blood cells (RBCs),
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or erythrocytes. The scattering medium in the blood plasma is mainly these red
blood cells, which have a diameter of about 6 — 8um [52]. As the scattering size is
much smaller than the wavelength used in medical ultrasound imaging, the scattering
properties will exhibit Rayleigh characteristics. This means that the sound scattered
from blood follows a frequency dependency law for the scattering power of f4.

There are two main approaches for modeling the blood medium and its ultrasound
scattering characteristics. One approach models the blood as a large collection of
particle objects [53, 54]. The main advantage of this approach is that the principle of
superposition can be applied to sum the backscattered wavelets from each individual
RBC. Another approach models the blood as a random continuum, where the insonified
scattering volume is assumed to consist of many scattering RBCs, which together form
a continuum whose density p and compressibility x change due to fluctuations in blood
cell concentration, causing the scattering of incoming ultrasound pressure waves [52,
55]. The two models can explain different properties known to exist for the scattering of
blood, but neither are consistent with measurements of the backscattering coefficient in
presence of phenomena such as turbulence, shear rate, and varying hematocrit [56, 57].
A unified approach where a hybrid of the two models have also been proposed to
provide a higher level of accuracy [58]. A more thorough review of the different models
proposed is also given here. There is a general agreement in both models, that the
scattering of ultrasound from blood can be described as a zero-mean Gaussian process
due to the large number of scattering red blood cells within an ultrasound resolution
cell. Considering the complex demodulated signal, a corresponding complex Gaussian
process is given.

The Doppler signal received from blood flow depends on the direction and velocity
relative to the ultrasound beam of all scatterers in the ensemble present within a
resolution cell. Each scatterer contributes to the total receive signal with a Doppler
shift, and a finite Doppler bandwidth due to the limited observation time related to
the movement through the sample volume. Turbulent behavior of flow will increase
the Doppler signal bandwidth.

By assuming rectilinear motion, and Gaussian shaped beam profiles constant over
the pulse shape, the received Doppler spectrum can also be shown to be Gaussian
shaped [59].

Tissue signal model

Tissue consist of different types of scatterers of varying size compared to the
wavelength of the transmitted ultrasound pulse, and therefore exhibit different
scattering characteristics. The scattering properties may further also vary with the
angle of insonification. Such anisotropy can be observed for instance when imaging
muscle fibers in the ventricle septum of the heart [25, 60]. Tissue characterization
based on analysis of the backscattered pressure waves from ultrasound has been an area
of research since the birth of diagnostic ultrasound imaging [5], but is still considered
experimental.

A simplified view is taken in this work. It is well known, that when the ultrasound
field insonifies a volume containing a large amount of randomly distributed scatterers,
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Figure 2.10: The tissue signal histogram from two different regions in the myocardium
wall of a pig. As can be observed, when looking at smaller regions, the distribution of
the tissue signal approaches a Gaussian shape. The data was acquired using an i13L
linear array (GE Healthcare, WI, USA) with a pulse frequency of 14 MHz.

a Gaussian distributed signal results [61]. This results in what is called fully developed
speckle in the ultrasound images. In parts of this thesis work where a tissue model
is applied, we assume this to be the case. When considering larger regions with non-
uniform scattering, a non-Gaussian distribution of the received tissue signal is typically
given due to large differences in scattering strengths. It can be justified however, that
when looking smaller regions in an image where a close to uniform medium is given,
the distribution of the received signal from tissue approaches a Gaussian shape. An
example of this is shown in Fig. 2.10, where the myocardium wall of a pig is imaged
using an i13L linear array probe (GE Healthcare, WI, USA) operating at 14MHz. As
can be observed, when looking at smaller sections of an image, the distribution of the
tissue signal does in fact approach a Gaussian shape.

The Doppler signal from tissue results from tissue movement due to muscle
contractions, and muscle vibrations in the operator holding the ultrasound probe and
the patient. There may also be a relative motion of the probe against the patient
skinline. The muscle contractions are typically cyclic, and are therefore accelerated.
This acceleration will increase the bandwidth of the tissue Doppler spectrum. Tissue
muscle vibrations were analyzed in [62], where it was modeled as a zero-mean Gaussian
process, and shown to set a lower bound on the measurable Doppler shifts from blood.

2.2.5 Blood signal separation

Blood flow signal separation remains an important topic in CFI. Due to beam side
lobes and reverberations, signal from surrounding tissue is also present inside the vessel
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lumens and the ventricles of the heart. This tissue clutter signal dominates the received
signal, and is a major source of bias in subsequent estimation of blood flow parameters.
Regardless of parameter estimation technique, the clutter signal must be accounted for.
A similar problem exist in RADAR, where fixed target canceling (FTC) is performed to
remove the stationary ground clutter component by simply subtracting subsequently
acquired beams, a simple high-pass filter. In diagnostic ultrasound imaging, this
problem is more elaborate. The tissue clutter can exhibit a substantial movement
during the heart cycle, which complicates matters by increasing the center frequency
and bandwidth of the tissue Doppler signal spectrum.

In conventional CFI algorithms, the clutter signal is removed by high-pass filtering
in the slow-time domain. Due to the discrete acquisition of subsequent beams, the
slow-time signal vectors must be filtered separately for each beam direction. The
clutter filter in CFI should have a sufficient stop-band attenuation for removing the
clutter component, and a short transition region to minimize removal of the Doppler
signal from blood. For most cases a stop band damping of 80 dB would be sufficient.

For clutter filtering purposes in CFI both finite impulse response (FIR), infinite
impulse response (IIR) high-pass filters, and also polynomial regression filters have
been used [63-66].

FIR filters

FIR filters can be described by an impulse response function h(n), n
where M — 1 is denoted the filter order. With an input signal z(n), n=10,..., Np—1,
the output signal y(n) is the convolution sum given by

y(n) = > h(k)x(n— k), (2.26)

where the first M — 1 output samples are invalid and discarded. FIR filters have
the advantage of being time invariant and easy to implement with low computational
demands. On the negative end, initializing filter samples have to be discarded, leaving
fewer samples for velocity estimation. As the following correlation estimates are not
dependent on the phase response, improved FIR filters for CFI can be achieved by
designing a minimum-phase filter [64]. A decreased variance in subsequent estimation
can then also be achieved by averaging estimates achieved after filtering in both the
forward and backward direction.

IIR filters
An infinite impulse (IIR) filter can be described by the difference equation

M M
y(n)=— Z ary(n — k) + Z brax(n — k), (2.27)
k=1 k=0

where M is denoted the filter order. This is a recursive equation, and the output
samples y(n) are dependent on present and past input samples as well as past output
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values. Due to the small number of samples available, the transient response of the
IIR filter must be reduced on the expence of a sharp steady-state filter response. The
initialization of the IIR filter therefore becomes important. Several methods have been
described for the initialization of IIR filters [66—68]. It has been shown that projection
initialization, where the transient vector subspace is removed from the output signal
by projection is superior for CFI applications [64].

Regression filters

Polynomial regression filter models the clutter signal by a set of orthonormal slowly
varying polynomial basis functions [63, 65]. Typically, the Legendre polynomials have
been used. The filter output is given as the projection of the input signal vector
onto the complement of the clutter signal basis given by

M—-1

y=(1-> bb;")z = Az, (2.28)
k=0

where by are orthonormal basis vectors spanning the clutter signal subspace, I is the
identity matrix and A is a projection matrix. The filter order is given by M — 1.
Polynomial regression filters have a high stop band attenuation, and an attractive
transition region compared to FIR and IIR filters. Another specific advantage of
regression filters is that no samples need to be discarded after filtering, reducing the
variance in subsequent flow parameter estimation. A disadvantage of the polynomial
regression filter approach is that it is not time-invariant. This causes a severe frequency
distortion in the transition region of the filter [63].

In Fig. 2.11, the frequency response of the three different types of filters are shown for
comparison. The main challenge of using high-pass filters to remove clutter in CFT is
to achieve filters with sufficient stop-band attenuation and at the same time a sharp
transition region for the short ensemble lengths available (see Section 2.2.3). Due to
the resulting non-ideal frequency response of the filters, they have a negative impact
on subsequent estimator accuracy [63, 64]. An insufficient stop-band attenuation for
removing the clutter component will lead to a negative bias towards zero frequency for
mean-frequency estimators. A long transition region of the clutter filter may remove
parts of the blood flow component, causing a positive bias. Also, the white noise
component becomes correlated after filtering, and contributes to a positive bias [69, 70].

2.2.6 Blood signal parameter estimation

In color flow imaging, the scatterer velocity is estimated by exploiting the change
in the RF or baseband signal due to scatterer movement over several pulse emissions.
Different approaches exist to accomplish this. The estimation of the Doppler spectrum
as in PW-Doppler is not a practical solution. Few temporal samples are available and
would lead to poor spectrum estimates, and the sheer amount of information would
in any case be difficult to visualize properly. Instead, parameters reflecting properties
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Figure 2.11: Comparison between three different types of high-pass clutter filters, a
fourth order polynomial regression filter, a projection initialized Chebychev IIR filter,
and a minimum-phase FIR filter. The figure is taken from [64].

of the Doppler spectrum is estimated. This process is done separately for each range
bin for several beams in a region of interest.

Conventional parameters of interest in CFI are the blood flow signal power P
indicating the presence of blood flow, the mean frequency of the Doppler spectrum
@q, and also the frequency bandwidth of the Doppler spectrum B, which relates to flow
disturbance. These parameters are directly related to the first three central moments
of the Doppler spectrum, which for a discrete process is given by [32, 42]

s

P = Gw)dw, og= %/j wG(w)dw, B*= %/W (w—©)*G(w)dw. (2.29)

—T —T

Estimation of spectral moments from short ensemble lengths is a challenging task.
Much work on the subject was performed in the weather-radar community in the late
seventies and early eighties parallel to the development in ultrasound imaging [40, 71],
where a similar problem and data acquisition is given. Implementation wise, spectral
parameter estimation can be done in the frequency or time-domain. In the frequency
domain an estimate of the power spectrum G(w) is replaced for G(w) in (2.29). This is
however not a practical solution in CFI due to computational demands. Time-domain
estimators obtain spectral parameters directly from the signal samples or through
correlation analysis, and can have low computational demands.

The estimators are further characterized based on the signal information they
employ. Referring to Fig. 2.9, the slow-time signal only or both the slow- and fast-
time signal can be utilized. The estimators are also characterized as being either
narrow or wide band estimators, based on the validity and assumption of input signal
bandwidth. Narrow band estimators are in principle valid for single frequency signals,
or may degrade in presence of wide band pulses, while wide band methods are valid
for general wide band pulse emissions.
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Phase-shift estimation is based on the fact that a displacement of the blood
scatterers between pulse emissions can be related to a change in phase of the received
signal compared to the demodulation frequency. Phase-shift estimation is limited by
aliasing when the displacement of scatterers correspond to a phase-shift of more than
£m. Basic phase-shift estimation utilize the slow-time signal only and are typically
narrowband. Phase-shift techniques have low computational demands, and can also
be done efficiently in the base-band.

Time-shift estimation is based on estimating the time delay of the received echoes
due to the displacement of scatterers, tracking the scatterer movement in the received
RF-signal. Methods include cross-correlation of subsequent pulse emissions, and
Fourier based methods implemented in time domain. Model based methods have
also been proposed. Time-shift estimation techniques exploit both the slow- and fast-
time information, and therefore produce estimates with a lower bias and variance, and
also above the aliasing limit. The improved performance may become marginal when
longer pulse lengths are needed to achieve sufficient penetration. Time-shift estimation
algorithms are in general much more computationally demanding than phase-shift
algorithms. Also, when based on RF-data this complexity is further increased.

Several specific estimators have been proposed for the estimation of blood flow
velocity in CFI. In the following subsections, a brief review of some of the most
important velocity estimators will be presented. The techniques described here deals
with the estimation of the axial velocity component. Experimental methods that also
estimate the lateral velocity component have been given a specific review in Section 2.4.

The autocorrelation estimator

The autocorrelation estimator was the one used to first demonstrate the feasibility
of real-time two-dimensional ultrasound color flow imaging. It was introduced by
Nakemawa and Kasai for diagnostic ultrasound applications in the mid-eighties [36,
37], but was earlier described in the context of weather radar by several authors [38—
40], where it eventually was named the correlated pulse-pair estimator.

The autocorrelation approach estimates the three spectral parameters P, wy and
B from the slow-time correlation function R, (m) at lag zero and one, given by

S B b B, B 1 [Ba(D)
P =R,(0), wg=ZR.(1), B=4]/1 2.0 (2.30)

A simple view of of the autocorrelation mean frequency estimator can be given as
follows. The correlation function R,(m) is related to the Fourier transform of the
Doppler spectrum through the Wiener-Kinchin theorem, which for m =1 is given by

1 iy ) 1wy ™ . B
Ro(1) = o / G(w)ew(iwze% / G(w)e =2 dy, (2.31)

—T —T

As can be seen, the mean Doppler frequency wy can be estimated from the phase angle
of R,(1) if the imaginary part of the last integral in (2.31) is zero. This is the case
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for spectra that are symmetric around the mean frequency [40], but is also a good
approximation for narrowband spectra.

In practise, the autocorrelation function of lag one is estimated from the received
signal sequence Rm(l) The mean axial velocity of blood is further obtained by a

scaling factor

c-PRF | .
S VR 2.32
o 2R (23

The properties of the autocorrelation estimator have been examined by several authors,
both in the weather radar community [38-40], and in the context of ultrasound blood
velocity estimation [35, 59, 72]. The autocorrelation estimator has been shown to be
an unbiased estimator of the mean spectral frequency for symmetric spectra, and in
presence of white noise, and can further estimate the mean frequency over the whole
frequency range from —7 to w. When utilizing spatial averaging the autocorrelation
estimate has been shown to improve substantially [72]. The autocorrelation approach
has also been extended to also use the fast-time signal through the simultaneous
estimation of the mean fast-time frequency [73], which was shown to reduce the
variance of the velocity estimates.

Vy =

The cross-correlation estimator

The cross-correlation estimator has also received much attention for blood flow velocity
estimation in diagnostic ultrasound. The concept of cross-correlation estimation of
blood flow velocity is in principle quite simple. As shown in Section 2.1.5, the received
signal from subsequent beam emissions is delayed a given time 7 due to the scatterer
movement, given by

2Az  2vcosOT
c c '

(2.33)

T =

This time delay can be estimated by finding the point of maximum correlation between
subsequent pulses r; and 7y in a range segment, given by

Tmaz = argmax Iy, (234)

where the cross-correlation for a specific range segment in the RF-signal is estimated
discretely by [27]

Ns—1

Z ri(k)re(k +m), (2.35)

k=0

Elg(m) = Nig

where Ng is the number of range samples in a given range segment. Knowing the time
between pulse emissions Tp, the axial velocity estimate can be calculated from

c 7/\—maf1:
U, = — . 2.
0. =3 T, (2.36)

As the velocity estimate produced by the cross-correlation technique is related to
the lag of maximum correlation, it is the dominant scatterer movement that is being
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tracked. The method can therefore not in general be related to the mean velocity of
the ensemble insonified as the autocorrelation technique.

The cross-correlation technique applied for ultrasound blood flow velocity
estimation, was described amongst others by Bonnefous [74], Foster [75], and Embree
and O’Brian [76], and has been validated both in-vitro and in-vivo. The influence
of different imaging system parameters on the delay estimate was described in [75].
The technique can achieve a lower variance estimate of the axial blood velocity
compared to the autocorrelation approach, and is in theory not limited by aliasing.
However, signal decorrelation sources will degrade the performance. The increased
performance compared to the autocorrelation method is reduced when longer pulses
must be used to obtained sufficient sensitivity. When also utilizing radial averaging
in the autocorrelation technique, the performance of the two has been shown to be
comparable in certain contexts [77].

Other estimators

Other estimators have been proposed since the introduction of real-time color flow
imaging. Ferrara and Algazi proposed a wideband maximum likelihood estimator [78§],
based on a model of a slowly fluctuation range-spread target. In this approach
the received signal is matched filtered to a model of the received signal of varying
parameters, and parameter estimates are determined from the best match. Other
wideband tracking techniques have been also proposed by Wilson [79] and Kaisar and
Parker [80]. A different approach was taken by Vaitkus who proposed using a root-
MUSIC estimator in CFI [81]. This estimator is based on the modeling of the blood
and clutter signal components as a number of eigenvectors of the estimated signal
correlation matrix. Similarly, AR modeling of the Doppler signal in CFI has also be
proposed [82]. The choice of correct model order is then crucial for performance.
Although shown to have potential for velocity estimation in CFI, these methods
described have not been fully validated in-vivo, and are still considered experimental.

2.2.7 Blood flow parameter visualization
Arbitration

Before display, the parametric information in CFI is combined with the tissue B-mode
image for duplex operation. For each image pixel, a decision it made wether tissue
of flow information is to be displayed. This hard arbitration mechanism is a way to
combine the two sources of information, but it is also necessary to reduce the amount
of artifacts related to the limitations of the current CFI processing. The decision is
typically based on comparisons of the power and frequency estimates of the Doppler
signal. An example of arbitration rule could be that higher mean frequencies indicate
blood signal, but simultaneously high power estimates may indicate flashing artifacts.
For this image point the tissue image should be displayed. However, such simple
threshold decisions are prone to error, and artifacts therefore occur.
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Visualization

The visualization of the estimated blood flow velocity parameters is based on color
encoding [30, 43]. The most basic visualization is to encode only the mean Doppler
frequency magnitude and direction. In this one-dimensional color scheme, the axial
direction of flow directed towards the away from the transducer is typically encoded
in different colors, while the velocity magnitude is encoded in an increased color
intensity. By further using a two-dimensional color scheme where the power estimates
also control the intensity of the color, a better delineation of the vessel walls can be
given. In cardiac imaging, it is common to use a two-dimensional colormap based
on flow velocity and bandwidth. In this mode areas of high bandwidth indicating
turbulence are highlighted in green color.

Another type of CFI visualization relies only on the Doppler signal power estimate
and has been named power-Doppler [83, 84]. This method is often combined with
a high degree of temporal averaging to produce angiography-like images suitable for
imaging of smaller vessels and low flow rates in stationary tissue, such as in abdominal
imaging.

Due to the spatial extents of the point spread function in ultrasound imaging, the
tissue and flow information will inherently overlap when close to one another, and
lead to color blooming artifacts where the flow image may cover areas of tissue. The
immediate vessel wall can for instance often be covered by the color image. This
problem is further aggravated when the spatial resolution for the flow image must be
reduced in order to achieve a sufficient sensitivity.

2.3 Adaptive clutter rejection in CFI

2.3.1 Filter bank approach

One approach to adaptive clutter filtering has been to select an appropriate fixed-
response clutter filter for each range gate based on estimated clutter Doppler signal
characteristics, such as for instance the clutter mean velocity and power. A method for
iteratively selecting the appropriate cut-off frequency of polynomial regression filters
has been described [85], and a method for selecting the appropriate filter from a
predefined set of high-pass filters has been proposed [86].

One drawback of these methods is the ad-hoc nature of optimizing the appropriate
filters for different mixtures of clutter and blood signal. Further, since the methods
depend on the estimated mean frequency of the clutter signal, errors will be induced
when these estimates are inaccurate. This may for instance occur inside the vessel
lumen of larger arteries, where the clutter and blood signal power may become
comparable. This will lead to a bias in the estimate of the mean clutter Doppler
frequency. Also, accelerated clutter movement will increase the bandwidth of the
clutter Doppler signal, and may also be a source of bias and variance when estimating
the mean frequency of the clutter signal.

59



2.3. Adaptive clutter rejection in CFI

e'Jq)(n)
l Downmixing  Clutter filter

x(n) @ P y(n) .

clutter filter

Downmixing f€«——@®

| —— Original spectrum - - = Downmixed spectrum

Figure 2.12: An illustration of the downmixing approach to adaptive clutter filtering.
The received Doppler signal is downmixed using an estimate of the mean or varying
clutter Doppler frequency.

2.3.2 Downmixing approach

Another adaptive filtering approach has been to process the received signal from
each sample volume prior filtering. A Doppler signal downmixing technique was
first proposed in [87, 88] for color flow imaging applications, and was given further
elaboration in [89]. In this method, the complex slow-time Doppler signal is
downmixed using a phase-function ¢(n) based on estimates of the clutter Doppler
frequency content, followed by a conventional non-adaptive high-pass filter. The
concept is illustrated in Fig. 2.12. If successful, the clutter signal is moved to zero
Doppler frequency, and a lower order clutter filter may then be used to remove the
clutter component in varying conditions. This is beneficial for imaging both low and
high velocities.

Estimates of the clutter Doppler frequency has been obtained using the
autocorrelation approach as described in Section 2.2.6. The most simple technique
performs downmixing using the estimates mean clutter Doppler frequency. The phase-
function ¢(n) used is then given by

Np—2

Gmy(n) = wen = 4 > Ru(k, 1)} n (2.37)
k=1

In this way adaptation to the tissue clutter velocity is achieved. This may be
satisfactory when considering the relative movement between the transducer and
patient. However, as rationalized in Section 2.2.4, the tissue movement also exhibits
accelerated movement. The downmixing approach can be extended to adapt to
acceleration by downmixing with a varying frequency obtained from the cumulative
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phase of the correlation function of lag one. In this approach, the phase-function can
be given by [89]

0 ifn=20
Gor(n) = {Zg_l /Ry(k,1) ifz=1,...,N—2 (2.38)
To ensure the adaptation to the clutter signal, the autocorrelation estimates Rt(l) are
averaged over a spatial region with similar characteristics.

As shown by Bjeerum [89], the varying frequency approach is the most efficient of
the two variants. However, the varying frequency approach must be used with caution
as it may cause complications for subsequent velocity estimation. The mixing process
with a varying frequency may cause artifacts in the resulting Doppler spectrum [90].
This does not occur for the constant mean frequency downmxing. A combined
approach could be to use the varying frequency for power estimates, and the mean
frequency downmixing for velocity estimates. By further doing arbitration based on
the power estimates, flashing artifacts may be reduced. This has been proposed in a
recent patent application by Germond-Rouet et al [90].

2.3.3 Eigenvector regression approach

A third approach to adaptive clutter rejection has been to design the clutter
filter adaptively based on the received signal statistics. One such approach is
eigenvector regression filtering. In this approach, the clutter signal is modeled as
a linear combination of orthonormal basis vectors, obtained through the eigenvector
decomposition of the signal correlation matrix. This approach to data representation
and analysis has different origins and names, including principal component analysis
(PCA), the Hotelling transform, and the (discrete) Karhunen-Loeve transform
(DKLT) [51]. Using the DKLT formulation, the received signal vector is expanded
into the basis given by

ok Noi=j
=) ke, E{m;}:{ o i (2.39)
=1

where x is a slow-time sample vector, and e; and \; are the eigenvectors and
eigenvalues of the correlation matrix defined in (2.24). The expansion in (2.39) is
sorted on decreasing eigenvalues );, a measure of the variance or energy represented
by an eigenvector e;. The DKLT follows when looking for an orthonormal basis
expansion with statistically orthogonal expansion coefficients x; [51]. It can be shown
that this is the most efficient representation of a random process in the mean-square
sense, when the expansion is truncated to use fewer than N terms.

In the practical case, an estimated correlation matrix at a given point is obtained
by averaging in a surrounding spatial region. The sample correlation matrix estimate
is given by

K
~ 1 N
R, = 7 glmkka, (2.40)

61



2.3. Adaptive clutter rejection in CFI

where K number of sample vectors that are used to form the estimate. The correlation
matrix is in general Hermitian symmetric and positive semidefinite, and a complete
(full rank) set of eigenvectors and orthonormal eigenvalues can be estimated if the
number of independent sample vectors K in (4.19) is at least equal to the packet size
Np [91]. The eigenvectors then span the complete signal vector space. In the context of
clutter filtering, a subset of these eigenvectors are selected for representing the clutter
signal component, and removed through projection filtering. The final clutter filter
can be formulated as a matrix-vector multiplication as for the polynomial regression
filter, given by

y = (I - JZV[: éié;‘kT)iL' = Az, (2.41)
i=1

where I is the identity matrix and é; are the estimated eigenvectors selected for clutter
representation. The filter order is defined as M — 1, i.e., a zero order filter includes one
eigenvector. As the method relies on estimation of the correlation matrix based on
spatial averaging of signal vectors, the eigenvectors will represent signal components
based on the average of the estimated signal statistics. Uniform statistics is therefore
assumed in the averaging region. When few sample vectors are used in the averaging
process, the variance of the correlation matrix estimate might also be a source of error
in clutter representation.

The question remains as to how to select the proper eigenvectors for clutter
representation. This aspect is crucial for the success of the algorithm. If the chosen
basis does not represent most of the clutter signal, it may not be properly attenuated,
and a bias in subsequent velocity estimation is inferred. Further, if eigenvectors also
representing the blood signal component is included, a substantial part of the blood
signal may be lost. The information available for selection of the proper basis is given
by the eigenvalues and eigenvectors. The eigenvalues has information about the signal
energy or variance represented by the eigenvector basis vector. A dominant signal
component that constitute a large part of the total signal variance, will therefore be
represented by eigenvectors with large corresponding eigenvalues. Due to the dominant
and low-bandwidth nature of the clutter Doppler signal, the clutter signal energy is
mostly contained in the signal subspace represented by a smaller set of eigenvectors
with large corresponding eigenvalues [89]. This has been the criteria used in prior
investigations [89, 92], where a fixed number of eigenvector basis has been selected
from the Np eigenvectors with the most dominant eigenvalues. This method follows
the truncated DKLT formulation. Among alternative basis representations used for
clutter filtering, such as the Legendre polynomial basis, it is optimal in removing
the most of the clutter signal for a given filter order. The approach assumes that
the blood signal energy is low compared to that of clutter signal. As the mixture
of clutter and blood signal varies throughout an image region, the appropriate filter
order also varies, and should be chosen adaptively. The filter order can be selected
based on the eigenvalue spectrum information, for instance by adaptive thresholding
of the eigenvalue spectrum or the eigenvalue spectrum slope.

As an alternative or extension to this approach, one can also conceive estimating
the frequency content of the individual eigenvectors, and base a decision on the fact
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Figure 2.13: The eigenvalue spectrum from a region containing tissue signal only, and
a region containing both tissue clutter and blood signal. The spectrum is sorted on
increasing frequency content of the eigenvectors. As can be seen, when blood signal
is introduced, it is represented by a different set of eigenvectors than that of tissue
signal. The data was acquired from a beating pig myocardium using an i13L linear
array (GE Healthcare, WI, USA) with a pulse center frequency of 10 MHz.

that the clutter signal typically has a lower frequency content than the signal from
blood. The mean frequency of each eigenvector can for instance be estimated using
the autocorrelation approach as described in Section 2.2.6. Aspects of both filter
order selection schemes can be observed in Fig. 2.13. The example is based on data
obtained from the beating heart of a pig, using an i13L linear array (GE Healthcare,
WI, USA) with a pulse center frequency of 10 MHz. The eigenvalues have been sorted
on the estimated mean frequency of each eigenvector. The clutter signal is in this
example mostly represented by the first three eigenvectors. The blood signal is mostly
represented by a different part of the spectrum with a higher frequency content. As
can be observed by careful inspection of this example, using only the signal energy as
a criteria for selecting eigenvectors would also have removed a substantial part of the
blood signal if the three most dominating eigenvectors had been chosen.

An advantage of the eigenvector regression approach compared to conventional
clutter filters is the fact that it can adapt to non-stationary movement. As described
in Section 2.2.4, the tissue clutter signal is typically accelerated, and the received
clutter signal thus exhibits this non-stationary behavior. The potential performance
gain obtained from this property in a practical setting remains to be investigated.
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2.4. Vector velocity imaging in CFI

2.3.4 Independent component analysis

Some efforts have been made to analyze and remove the clutter signal component
by independent component analysis (ICA) [93, 94], based on the JADE algorithm
described by Cardoso [95]. This is a blind signal separation approach based on the
non-Gaussian characteristics of the signal components of interest. In the case of CFI,
the Gaussian assumption for the blood signal component is well rationalized. For the
tissue component, the different scattering characteristics throughout an image region
may lead to an averaged non-Gaussian distribution. As the estimation of statistics
for the signal components must be based on the assumption of uniform statistics
in a region of interest, small averaging regions must be employed. As discussed in
Section 2.2.4, the distribution of the tissue signal then typically approaches a Gaussian
shape. Using ICA and higher-order statistics are therefore not expected to give an
increase in performance compared to using a second-order Gaussian approach. The
methods are therefore not properly justified for the task of clutter rejection.

2.4 Vector velocity imaging in CFI

2.4.1 Compound Doppler and related techniques
Compound Doppler approach

By utilizing several Doppler measurements from different beam angles, an estimate of
the blood flow velocity vector can be obtained. This compound Doppler approach has
been a area of research in over 30 years, and an excellent review for both PW-Doppler
and CFT systems is given by Dunmire [96]. Two main approaches have been used for
compound Doppler in CFI. Either combining two or three regular CFI acquisitions
steered in different directions [97], or to simultaneously use separate subapertures
on the same transducer array for transmit and receive [98-100]. For use in CFI the
most practical approach is to transmit in one direction, and to receive and beamform
from two directions in parallel using separate subapertures. This particular setup is
illustrated in Fig. 2.14. In this way using parallel receive beamforming, only one frame
acquisition is needed, critical for following the dynamics of the flow. The axial and
lateral velocity component in this two-dimensional setup is then given by [96]

_C'(fl_fT) _ C'(fl"’fr)
et = gy sin® T 5y (14 cosf)’ (2:42)

where f; and f, is the Doppler shift received from the left and right subaperture
respectively, and 6 is the angle between the receive and transmit directions. This
angle can be kept constant in depth by beam steering and by gradually sliding the
receive subapertures from the middle towards the ends of the transducer for increasing
depths.

Limitations of the compound Doppler approach is mainly related to the problem
of achieving a sufficient angle of separation between the beam directions to obtain a
sufficient accuracy in velocity measurements for increasing depths. Also, for transducer
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Figure 2.14: A compound Doppler approach for CFI utilizing one transmit aperture
and two receive apertures beamformed in parallel.

subarray approaches, the receive apertures will be reduced in size, compromising the
sensitivity. Although the compound Doppler approach has been validated to give
reasonable accurate results in different vascular contexts, no mainstream system is
available, and clinical studies rationalizing the use of the method are still limited [96].

Lateral modulation approach

Another approach related to the compound Doppler technique has been proposed by
Jensen and Munk [101] and Anderson [102]. The methods are based on producing a
modulation in the lateral direction of the received ultrasound field, using complex
apodization schemes. A scatterer movement in the lateral direction can then be
registered using a phase-shift technique as in the radial direction.

The approach taken by Anderson has been called spatial quadrature, and relies on
the use of a complex apodization scheme on receive to create the lateral modulation.
Using odd and even apodization functions related by a Hilbert operator, an in-phase
and quadrature PSF can be produced using parallel beamforming on receive. The two
different receive signals are added and subtracted to produce a signal from a left and
right receive subaperture, respectively, as defined by the distance between the peaks
of the apodization functions.

The approach by Jensen and Munk has been named transverse oscillation. Two
sinc-shaped receive apertures placed a distance apart have been used to create the
lateral modulation on receive. To have a spatial modulation that only depends on
the receive field, a near uniform beam is transmitted using a Gaussian transmit
apodization. The in-phase and quadrature signal from the lateral modulation is
directly sampled by steering two receive beams one quarter of a wavelength apart
symmetrically around the transmit beam direction. This can be done by parallel
beamforming in one frame acquisition.
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In both methods the lateral modulation is approximated to be given through the
Fraunhofer approximation as the Fourier transform of two point sources placed a
distance apart. This results in a sinusoidal modulation given by

T1at(t) = cos(27r2)\t) = cos(27 fiait), (2.43)
z

where D is the distance between the two point sources, z is the depth of interest, and
A is the wavelength of the emitted pulse.

Compared to the compound Doppler approach described above, the lateral
modulation approaches uses complex apodization schemes to obtain the signal from
two separated subapertures on receive. Using a Hilbert transform as in the spatial
quadrature approach, is in theory identical to the compound Doppler method
described. This relation was also indicated by Anderson [103]. The transverse
oscillation method on the other hand, uses a narrowband approximation to the Hilbert
transform, and this method is therefore at best equal to the other two.

2.4.2 Doppler bandwidth method

The bandwidth of the received composite Doppler signal is dependent on the spread of
velocities of the scatterers present. It is further also dependent on the finite observation
time of individual scatterers given as they travel through the sample volume [104, 105].
This is termed the transit-time broadening effect. Several authors have proposed
models of the Doppler bandwidth variation [106-108], and the idea of estimating the
lateral flow component based on the estimated Doppler bandwidth [109-111]. To
obtain a bandwidth dependency independent of different beam-to-vessel angles, the
methods has been based on shaping the Doppler sample volume spherically [107]. As
non-stationary behavior will also contribute to the doppler spectral bandwidth, the
methods are based on stationary flow assumptions.

The main challenge of this method is perhaps to obtain a robust estimate of the true
Doppler signal bandwidth in a realistic setting. This can be in general be problematic
in low signal-to-noise conditions. The clutter signal will also be a problem if not
properly removed. This could especially be problematic in the systole part of the
cardiac cycle at the time of the incoming flow pulse. The clutter rejection filter
will further cause problems when the flow direction approaches a transverse direction
compared to the beam, as a major part of the Doppler signal from blood may then be
removed. These confounding factors has kept the Doppler bandwidth method at an
experimental stage.

2.4.3 Speckle tracking techniques

The lateral velocity components of blood will move the blood scatterers out of the axial
beam direction. As an extension to the 1-D axial cross-correlation technique, one can
conceive searching for the maximum signal correlation between image acquisitions in
the two-dimensional image plane, or even the three-dimensional image volume. The
velocity vector can then be in principle measured based on the distance to the point of
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Figure 2.15: An illustration of the speckle tracking concept. The best match of a given
kernel region is searched for in a larger search area of a subsequent acquisition. The
velocity can be calculated based on the estimated displacement and the time between
image acquisitions.

maximum correlation and the time between image acquisitions. Due to computational
demands of two- or three-dimensional cross-correlation, this is difficult to do in real-
time at present. However, methods have been proposed that approximate the true
correlation function with similar measures. To further reduce the complexity, the
methods also operate on the signal envelope rather than the RF-signal. By matching
speckle pattern regions in subsequent frames an estimate of the displacement and
velocity of the given pattern is given by the position of the best match. This concept,
referred to as speckle tracking, is shown in Fig. 2.15 for the two-dimensional case.

Common correlation measures include the sum of absolute differences (SAD), or
the sum of squared differences (SSD) of image patterns. Considering X, as the kernel
region and X; to be region in a search area in a subsequent image acquisition, the
SAD formula can be written as [112]:

K L
e, ) => > [ Xo(k,1) = X1(k — a,1 = B)], (2.44)

k=11=1

where the quantity € is termed the SAD coefficient, K and L defines the lateral and
axial size of the kernel region, and « and 3 defines the offset compared to the center
in the search region. Pushed by the demands of multimedia video compression,
SAD calculations are now an integral part of the multimedia instruction sets on
modern CPUs [113], which can substantially increase the efficiency of an SAD tracking
implementation.

The concept of ultrasound speckle tracking for flow velocity vector estimation was
proposed at Duke University [114, 115]. This group also developed a system capable
of producing approximatively 800 velocity vector estimates in real-time [116], which
was analyzed in-vitro and in-vivo in a series of papers [117, 118]. Their efforts were
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summarized in [112]. In general, a good correlation in velocity vector estimates was
reported for regular lateral flow and high signal-to-noise ratios. Axial flow components
severely decreased the accuracy of the method. Clinical in-vivo studies have not been
performed.

The main limitations of the speckle tracking approach for blood flow velocity vector
estimation are related to clutter filtering and speckle pattern decorrelation. To achieve
a sufficient attenuation of the clutter signal while retaining the signal from blood,
the imaging frame rate of the two- or three-dimensional search region must be high
compared to the Doppler shifts produced by the movement of tissue. Also, when the
direction of flow approaches a pure lateral direction, the Doppler shifts approaches
zero, and a large part of the blood signal will be removed using traditional clutter
rejection filters. Due to the lateral bandwidth of the imaging system, some blood
signal will typically remain after filtering. As shown in [122], a bandpass signal is then
produced, inferring an amplitude modulation in the remaining speckle pattern.

The blood flow speckle pattern rapidly decorrelates due to sources such as non-
laminar flow patterns, flow velocity gradients, and out-of-plane movement in two-
dimensional velocity estimation. This speckle decorrelation can severely degrade the
performance of the speckle tracking procedure. Due to the bandpass nature and higher
spatial frequency content in the axial direction, the decorrelation is more prominent
when a substantial axial velocity component is present [119].

The high imaging frame rate of lateral subregions needed may be obtained by
using beam interleaving techniques as described in Section 2.2.3. Smaller subimages
are then obtained at a frame rate equal to the pulse repetition frequency. As there is
no correlation of the speckle pattern between interleave groups, the speckle tracking
algorithm must be performed within one group. Also, as the interleave group width
shrink for increasing scan depths, so will the width of the search regions. Another
approach is to track the speckle signal within groups of receive lines acquired using
multiple line acquisition (MLA) [120, 121]. In this way, very small subregions can be
acquired simultaneously at a very high frame rate. Two or four times MLA is today
common in high-end scanners, but this is will be further increased due to the demands
of frame rate imposed by dynamic three-dimensional imaging.

Another challenge in speckle tracking is related to spatial sampling and
interpolation. The movement of scatterers as estimated using speckle tracking is
limited to a displacement of an integer number of beam and range samples. To ensure
a sufficient overall frame rate for following the flow dynamics, the lateral sampling
is limited, and interpolation methods then becomes crucial in order to estimate the
movement of the scatterers with good accuracy.

In summary, although efforts have shown that speckle tracking of blood is feasible,

the lack of robustness for irregular flow patterns and the challenge of clutter filtering
has kept the method at an experimental stage.
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2.5 Future directions of CFI systems

Future CFI systems has more to offer. Current trends of real-time 3-D ultrasound
imaging is at the moment pushing the technology forward, and also offer new
possibilities for improved 2-D imaging. Transducer, transmitter, and beamforming
technology is becoming increasingly more sophisticated, and the continuing increase
in computational power of standard CPUs and graphic card GPUs, opens up for the
use of more advanced real-time signal processing that can be more easily implemented
and evaluated.

An improved separation of flow through adaptive signal processing can be expected
to improve the estimation of low-velocity flow in peripheral vessels, and to provide a
better image of coronary flow in transthoracic imaging. High-frequency imaging of the
microcirculation such as for the detection of angiogenesis in cancer diagnosis might
also be possible in combination with more advanced clutter rejection in the future.

High-frequency imaging in the 20-80 MHz range has for practical purposes
conventionally been done using mechanically steered transducers, and the CFI
performance is then more challenging then for transducer arrays [123]. Current
research efforts are however producing increasingly robust high-frequency arrays [124],
which may increase the performance of high-frequency microcirculation imaging.

Real-time dynamic three-dimensional color flow imaging is now available, and is
expected to increase the certainty of diagnosis of cardiac abnormalities such as the
quantification of valve leakage area. One of the challenges of this modality is to
achieve a sufficient frame rate. Currently, ECG triggering over several heart cycles is
needed to obtain a sufficiently large imaging volume sector at tolerable frame rates. An
increased frame rate can be expected by the use of more parallel receive beamforming,
however, the number of parallel receive beams is ultimately limited by demands of
penetration, as the transmit beam must be broad enough to cover all receive beams.
Adaptive clutter rejection techniques may further be used to lower the packet size in
CF1I to achieve a higher frame rate [90].

Two- and three-dimensional vector velocity estimation has been a continuing area
of research. At the moment, compound Doppler techniques and speckle tracking are
perhaps the most liable candidates for accomplishing this task in the near future. Real-
time operation of both these methods is today considered feasible. In high-frequency
flow imaging the use of speckle tracking becomes more attractive as the signal power
of blood then becomes comparable to that of tissue, and can then be tracked with less
demands of clutter filtering [125].
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